

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Core Mathematics C34 (WMA02/01) Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of **people, wherever they are in the world. We've been involved in education for** over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code WMA02_01_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018 • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if **the candidate's response is not worthy of credit according** to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the **application of the mark scheme to a candidate's response**, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes..

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks
1. (i)	$\left\{\int \frac{2x^2+5x+1}{x^2}\mathrm{d}x=\right.$	$\int 2 + \frac{5}{x} + \frac{1}{x^2} dx \bigg\}$	
		At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero.	M1
	$= 2x + 5\ln kx - \frac{1}{x} \{+c\}$	At least 2 out of the 3 terms are correct. e.g. 2 of $2x, -\frac{1}{x}, 5 \ln kx$	A1
	Where $k \neq 0$ (k is usually 1)	$2x + 5\ln kx - \frac{1}{x}$ with or without + c all on one line and apply isw once seen. Do not allow + $\frac{1}{-x}$ for $-\frac{1}{x}$	A1
			[3]
	(i) Alternative b		
	$\left\{ \int \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = -\frac{1}{x} \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x$	$\left\{ 2^{2}+5x+1\right) +\int \frac{1}{x}(4x+5) dx \right\}$	
	$= -2x - 5 - \frac{1}{x} + 4x + 5 \ln kx \{+c\}$	At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero.	M1
	x	At least 2 out of the 3 terms are correct. At least 2 of $2x, -\frac{1}{x}, 5 \ln kx$	A1
	$= 2x - 5 - \frac{1}{x} + 5 \ln kx \{+c\}$ Where $k \neq 0$ (k is usually 1)	$2x - 5 - \frac{1}{x} + 5 \ln kx \text{ with or without } + c$ Or $2x + 5 \ln kx - \frac{1}{x}$ with or without $+ c$ all on one line and apply isw once seen. Do not allow $+ \frac{1}{-x}$ for $-\frac{1}{x}$	Al

rnative by parts II:	
$\left\{ \int \left(2x^2 + 5x + 1 \right) x^{-2} \mathrm{d}x = x^{-2} \left(\frac{2x^3}{3} + \frac{5x^2}{2} + x \right) + \int 2x^{-3} \left(\frac{2x^3}{3} + \frac{5x^2}{2} + x \right) \mathrm{d}x \right\}$	
At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α , β non zero.	M1
At least 2 out of the 3 terms are correct. At least 2 of $2x, -\frac{1}{x}, 5 \ln kx$	A1
$2x + \frac{5}{2} - \frac{1}{x} + 5 \ln kx \text{ with or without } + c$ or $2x + 5 \ln kx - \frac{1}{x}$ with or without $+ c$ all on one line and apply isw once seen. Do not allow $+ \frac{1}{-x}$ for $-\frac{1}{x}$	A1
$\left. + (5x+1)x^{-2} dx \right\} = 2x - \frac{1}{x}(5x+1) + \int \frac{5}{x} dx$	
At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}; A, B, \alpha, \beta$ non zero.	M1
At least 2 out of the 3 terms are correct. At least 2 of $2x, -\frac{1}{x}, 5 \ln kx$	A1
$2x - 5 - \frac{1}{x} + 5 \ln kx \{+c\} \text{ with or without } + c$ or $2x + 5 \ln kx - \frac{1}{x}$ with or without $+c$ all on one line and apply isw once seen. Do not allow $+\frac{1}{-x}$ for $-\frac{1}{x}$	A1
	$\frac{2x^{3}}{3} + \frac{5x^{2}}{2} + x + \int 2x^{-3} \left(\frac{2x^{3}}{3} + \frac{5x^{2}}{2} + x \right) dx $ At least one of either $\pm \frac{A}{x} \rightarrow \pm \alpha \ln kx$ or $\pm \frac{B}{x^{2}} \rightarrow \pm \beta x^{-1}; A, B, \alpha, \beta \text{ non zero.}$ At least 2 out of the 3 terms are correct. At least 2 of $2x, -\frac{1}{x}, 5\ln kx$ $2x + \frac{5}{2} - \frac{1}{x} + 5\ln kx \text{ with or without } + c$ or $2x + 5\ln kx - \frac{1}{x}$ with or without $+ c$ all on one line and apply isw once seen. Do not allow $+ \frac{1}{-x}$ for $-\frac{1}{x}$ $\frac{1}{x} + \frac{5x^{-1}}{2} + \frac{5}{x} + \frac{5x^{-1}}{x} + 5x^{-$

(ii)		$\left\{ \mathbf{I} = \int x \cos 2x \mathrm{d}x \right\}, \begin{cases} u = x \\ \frac{\mathrm{d}v}{\mathrm{d}x} = c \end{cases}$	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 1$ $\cos 2x \Rightarrow v = \frac{1}{2}\sin 2x$	
			$\pm \lambda x \sin 2x \pm \mu \int \sin 2x \{ dx \}$ BUT if the parts formula is quoted incorrectly score M0	M1
		$=\frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x \left\{ dx \right\}$	$\frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x \{dx\}$ simplified or un-simplified	A1
		$=\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x \left\{+c\right\}$	$\begin{vmatrix} \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x & \text{with or without } + c, \\ \frac{1}{2}x\sin 2x - \left(-\frac{1}{4}\cos 2x\right) & \text{is A0} \end{vmatrix}$	A1
				[3]
		Quas	tion 1 Notes	6
	Note		t forms e.g. $5\ln 5x$ or $2.5\ln x^2$ etc. and allow mod	lulus signs
(i)	Note	There are no marks for attempts at $\int_{-\infty}^{2} dt$	$\frac{dx^2 + 5x + 1 dx}{\int x^2 dx}$	
(ii)	Note	There are no marks for attempts at $\int x dx$	$\cos x \mathrm{d}x$	

Question Number	Scheme	Notes	Marks
2.	$x = \frac{3}{2}t - 5, y = 4$		
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3}{2}, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$	Both $\frac{dx}{dt} = \frac{3}{2}$ or $\frac{dt}{dx} = \frac{2}{3}$ and $\frac{dy}{dt} = 6t^{-2}$ $\frac{dy}{dt}$ can be simplified or un-simplified. Note: This mark can be implied.	B1
	So, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6t^{-2}}{\left(\frac{3}{2}\right)} \left\{ = 4t^{-2} \right\}$	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
	$\left\{ \text{When } t = 3, \right\} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{9}$	$\frac{4}{9}$	A1 cao
			[3]
(b)	• $t = \frac{x+5}{\left(\frac{3}{2}\right)} \implies y = 4 - \frac{6}{\left(\frac{x+5}{\left(\frac{3}{2}\right)}\frac{1}{j}\right)}$	An attempt to eliminate <i>t</i> .	M1
	• $t = \frac{6}{4-y} \implies x = \frac{3}{2} \left(\frac{6}{4-y}\right) - 5$ • $\frac{6}{4-y} = \frac{2}{3} (x+5)$	Achieves a correct equation in x and y only.	A1 o.e.
	$\implies y = 4 - \frac{9}{x+5}$		
	$\Rightarrow y = \frac{4(x+5)-9}{x+5}$		
	$\Rightarrow y = \frac{4x + 11}{x + 5}$	$\underline{a=4}$ and $\underline{b=11}$ or $\frac{4x+11}{x+5}$	A1
	$x \neq -5$ or $k = -5$	Do not is so if they have $x \neq -5$, $k \neq -5$ score B0 i.e. penalise contradictory statements.	B1
			[4]
	Alternative 1	· · ·	
	ax+b , 6	a(1.5t-5)+b	
	$y = \frac{ax+b}{x+5} \Longrightarrow 4 - \frac{6}{t} =$	$\frac{1.5t-5+5}{1.5t-5+5}$	
	$\Rightarrow 4 - \frac{6}{t} = \frac{1.5at - 5a + b}{1.5t} \Rightarrow 6t - 9 = 1.5at - 5a + b$ $\Rightarrow 6t = 1.5at \text{ or } -9 = -5a + b$	Substitutes for <i>x</i> and <i>y</i> and "compares coefficients" for term in <i>t</i> or constant term	M1
	a = 4 or $b = 11$	Correct value for <i>a</i> or <i>b</i>	A1
	a = 4 and $b = 11$	Correct values for <i>a</i> and <i>b</i>	A1
	$x \neq -5$ or $k = -5$	Do not is so if they have $x \neq -5$, $k \neq -5$ score B0 i.e. penalise contradictory statements.	B1
			[4]
			7

		Alternative 2 for (b):					
		$y = \frac{4t-6}{t} = \frac{3(4t-6)}{2\frac{3t}{2}} = \frac{3(4t-6)}{2(x+5)} = \frac{4 \times \frac{3t}{2} - 9}{(x+5)} = \frac{4(x+5) - 9}{(x+5)}$					
		$\frac{1}{2} = \frac{1}{2} \left(x + y \right)^{2} \left(x + y \right)^{2}$ M1: Obtains y in terms of x	M1A1				
		A1: Correct unsimplified expression					
		$\Rightarrow y = \frac{4x + 11}{x + 5} \qquad \qquad \underline{a = 4} \text{ and } \underline{b = 11} \text{ or } \frac{4x + 11}{x + 5}$					
		$x \neq -5$ or $k = -5$ bo not is so if they have $x \neq -5$, $k \neq -5$ score B0 i.e. penalise contradictory statements.					
			[4]				
		Question 2 Notes					
2. (a)	Note M1 can also be obtained by substituting $t = 3$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then dividing						
		their values the correct way round.	<u> </u>				
		Some candidates may use the Cartesian form in (a) possibly having done (b)	-				
		$y = \frac{4x+11}{x+5} \Rightarrow \frac{dy}{dx} = \frac{4(x+5)-4x-11}{(x+5)^2} \left(= \frac{9}{(x+5)^2} \right) t = 3 \Rightarrow x = \frac{9}{2} - 5 = \frac{1}{2}$	$=-\frac{1}{2}$				
	Note	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{9}{\left(-\frac{1}{2}+5\right)^2} = \frac{4}{9}$					
		This would require a complete method to find the Cartesian equation and then B1 derivative. Then M1 for a complete method attempting the derivative and substit and A1 for 4/9 as in the main scheme. The marks for obtaining the Cartesian equation can score in (b) provided their equation is seen or used in (b). (i.e. if they do (a) first)	uting for x or t				

Question Number	Scheme		Notes	Marks
3.	$f(x) = 2^{x-1} - 4 + 1.5x, x \in \mathbb{R}$	$x_{n+1} = \frac{1}{3}$		
(a)	$0 = 2^{x-1} - 4 + 1.5x \implies 1.5x = 4 - 2^{x-1} \text{ or } 4$	$1 - 2^{x-1} = 1.5x$	Sets $f(x) = 0$ and makes $1.5x$ (or kx) the subject of the formula using correct processing so allow sign errors only.	M1
	$\Rightarrow x = \frac{2}{3} \left(4 - 2^{x-1} \right) \Rightarrow x = \frac{1}{3} \left(8 - 2^x \right)$ or $\Rightarrow x = \frac{\left(4 - 2^{x-1} \right)}{1.5} \Rightarrow x = \frac{1}{3} \left(8 - 2^x \right)$		$x = \frac{1}{3} (8 - 2^x)$ by cso with at least one intermediate step. Do not accept recovery from earlier errors for the A mark. Note that the "= 0" must be seen at some point for this mark even if only from $f(x) = 0$ at the start.	A1 *
	Special case: Starts with $1.5x = 4 - 2^{x-1}$ and	nd completes m	nethod with no f(x) = 0 is M1A0	
				[2]
	Alternative working backwards:			
	$x = \frac{1}{3} \left(8 - 2^x \right) \Longrightarrow 3x = 8 - 2^x \Longrightarrow 2^x - 8 - 3x = 8 - 2^x \Longrightarrow 2^x \Longrightarrow 2^x = 8 - 2^x \Longrightarrow $			
	$2^{x} - 8 + 3x = 0 \Longrightarrow 2^{x-1} - 4 + 1.5x =$	$2^{x} - 8 + 3x = 0 \Longrightarrow 2^{x-1} - 4 + 1.5x = 0$ Obtains $2^{x-1} - 4 + 1.5x = 0$ by cso.		A1
				[2]
(b)	$x_1 = \frac{1}{2} \left(0 - 2 \right)$		$x_0 = 1.6 \text{ into } \frac{1}{3} (8 - 2^{x_0}).$ be implied by $x_1 = \text{awrt } 1.66$	M1
	$x_1 = 1.656$, $x_2 = 1.616$	$x_1 = $ awrt 1.656	and $x_2 = awrt 1.616$	A1
	x ₃ = 1.645	$x_3 = 1.645$ only	(not awrt)	A1 cao
	Mark their values in the order given i.e.	assume their f	irst calculated value is x_1 etc.	
(c)	f(1.6325) = -0.00100095			[3]
(c)	or awrt -1×10^{-3} f(1,6335) = 0.00157396	Chooses a suitable interval for <i>x</i> , which is within 1.633 ± 0.0005 and either side of 1.63288 and attempts to evaluate $f(x)$ for both values.		
	Sign change (negative, positive) (and $f(x)$ is continuous) therefore root ($\alpha = 1.633$)	is Both values correct awrt (or truncated) 1 sf, sign change and a conclusion		
				[2]
				7

	Question 3 Notes
M1	There are other methods for obtaining the printed equation but the M1 scores for setting $f(x) = 0$ and making kx the subject of the formula using correct processing e.g.
	$0 = 2^{x-1} - 4 + 1.5x \implies \frac{2^x}{2} - 4 + 1.5x = 0 \implies 3x = 8 - 2^x \text{ M1}$
	$\Rightarrow x = \frac{1}{3} \left(8 - 2^x \right) (*) \qquad \text{A1}$
	$0 = 2^{x-1} - 4 + 1.5x \implies 2^x - 8 + 3x = 0 \implies 3x = 8 - 2^x \text{ M1}$
	$\Rightarrow x = \frac{1}{3} (8 - 2^x) (*) \qquad \text{A1}$
A 1	$\frac{3}{3} \left(\frac{3}{2} \right) \left(\frac{3}{2} \right)$

3. (c)	A1	Correct solution only.
		Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1sf along with
		a reason and conclusion. Reference to change of sign or $f(1.6325) \times f(1.6335) < 0$ or
	a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There multiply conclusion, e.g. $\partial = 1.633$ (3 dp). Ignore the presence or absence of any reference to conclusion.	
	Note	A minimal acceptable reason and conclusion could be "change of sign, so true" In part (c), candidates can construct their proof using a narrower range than [1.6325, 1.6335] which contains the root 1.632888767

3. (a)

Attempts to expand $(3 + 4x) \times$ their part (a) expansion. There should be evidence of at least $(3 \times one term from part (a)) + (4x \times one term from part (a))$ Note: $f(x) = 3 + (4 - 12p)x + (30p^2 - 16p)x^2 + (40p^2 - 60p^3)x^3 +Dependent on the previous Mmark Multiplies out to give exactlytwo terms in x and exactly 2 terms inx² and attempts one coefficient =twice the other. This mark can beimplied by later working. Allow x'sto be present for this markOror 2"(30p^2 - 16p)" = "(4 - 12p)"Correct equation with no x'sDependent on the 1st M markCorrect method for solving a 3TQleading to at least one value.If working is shown see generalguidance for solving 3TQs. If noworking is shown then you mayneed to check to see if their 3TQsolves correctly.$	M1 A1 A1 [3]
$ \begin{array}{ c c c c c } \hline & = 1 - 4px + 10p^2x^2 - 20p^3x^3 + \dots & \\ & \text{or} & \\ & \text{or} & \\ & = 1 - 4(px) + 10(px)^2 - 20(px)^3 + \dots & \\ & \text{All four terms correct and simplified and} \\ & \text{isy once a correct answer is seen.} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be seen in part (a).} & \\ & \text{Must be evidence of at least (3 \times one term from part (a) + (4x \times one term from part (a))} & \\ & \text{Must is be seen in part (a).} & \\ & \text{Must be evidence of at least (3 \times one term from part (a)) + (4x \times one term from part (a))} & \\ & \text{Must is f(x) = 3 + (4 - 12p)x + (30p^2 - 16p)x^2 + (40p^2 - 60p^3)x^3 + \dots} & \\ & = 3 - \frac{12px + 30p^2x^2}{9} - 60p^3x^3 + \frac{4x - 16px^2}{9} + 40p^2x^3 & \\ & \Rightarrow \\ & \text{"30}p^2 - 16p^2 = 2'(4 - 12p)" & \\ & \text{Must Multiplies out to give exactly two terms in x and exactly 2 terms in x^2 and attempts one coefficient = twice the other. This mark can be implied by later working. Allow x's to be present for this mark \\ & 30p^2 - 16p = 2(4 - 12p) & \\ & \text{Correct equation with no x's} & \\ & \text{Must be at a store value.} & \\ & \text{Must be at convexing a 3TQ} \\ & \text{ading to at least one value.} & \\ & \text{ff working is shown see general guidance for solving 3TQs. If no working is shown then you may need to check to see if their 3TQ solves correctly.} & \\ & \text{Must be at the store of the see of the in 3TQ} \\ & \text{Solves correctly.} & \\ & \text{Must be at the you may} \\ & \text{Solves correctly} & \\ & Solves corr$	A1
$= 1 - 4(px) + 10(px)^{2} - 20(px)^{3} + \dots$ is wonce a correct answer is seen. Must be seen in part (a). (b) $\begin{cases} f(x) = \frac{3+4x}{(1+px)^{4}} = \\ f(x) = $	
(b)Must be seen in part (a).(b) $\begin{cases} f(x) = \frac{3+4x}{(1+px)^4} = \\ f(x) = \frac{3+4x}{($	[3]
(b) Attempts to expand $(3 + 4x) \times$ their part (a) expansion. There should be evidence of at least $(3 \times one \text{ term from part } (a)) + (4x \times one \text{ term from part } (a))$ Note: $f(x) = 3 + (4 - 12p)x + (30p^2 - 16p)x^2 + (40p^2 - 60p^3)x^3 +$ $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ \Rightarrow $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ $= 3 - 12px + 30p^2x^2 - 60p^3x^3 + 4x - 16px^2 + 40p^2x^3$ $= 3 - 12px + 30p^2x^2 - 16p = 2(4 - 12p)$ $= 3 - 12px + 30p^2x^2 - 16p = 2(4 - 12p)$ $= 3 - 12px + 30p^2x^2 - 16p = 2(4 - 12p)$ $= 3 - 12px + 30p^2x^2 + 8p - 8 = 0$ $\Rightarrow (10p - 4)(3p + 2) = 0$ or $(5p - 2)(6p + 4) = 0 \Rightarrow p =$ $= 3 - 12px + 30p^2x^2 + 8p - 8 = 0$ $\Rightarrow (10p - 4)(3p + 2) = 0$ or $(5p - 2)(6p + 4) = 0 \Rightarrow p =$ $= 3 - 12px + 30p^2x^2 + 4p - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p =$ $= 3 - 12px + 30p^2x^2 + 4p - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p =$ $= 3 - 12px + 30p^2x^2 + 4p - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p =$ $= 3 - 12px + 30p^2x^2 + 4p - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p =$ = 3 - 12px + 3px	[J]
There should be evidence of at least $(3 \times \text{ one term from part } (a)) + (4x \times \text{ one term from part } (a))Note: f(x) = 3 + (4 - 12p)x + (30p^2 - 16p)x^2 + (40p^2 - 60p^3)x^3 +Begendent on the previous Mmark Multiplies out to give exactlytwo terms in x and exactly 2 terms inx² and attempts one coefficient =twice the other. This mark can beimplied by later working. Allow x'sto be present for this mark30p² - 16p " = 2(4 - 12p)"Oror 2"(30p^2 - 16p)" = "(4 - 12p)"Correct equation with no x's30p² + 8p - 8 = 0\Rightarrow (10p - 4)(3p + 2) = 0 or (5p - 2)(6p + 4) = 0 \Rightarrow p =Orto r15p² + 4p - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p =Orto check to see if their 3TQsolves correctly.$	M1
$= 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 12px + 30p^{2}x^{2} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p^{2}x^{3}$ $\Rightarrow = 3 - 16p^{2} - 16p^{2} = 2(4 - 12p)$ $\Rightarrow = 3 - 16p^{2} - 16p^{2} = (4 - 12p)$ $\Rightarrow = 3 - 16p^{2} - 16p^{2} = (4 - 12p)$ $\Rightarrow = 3 - 16p^{2} - 16p^{2} = (4 - 12p)$ $\Rightarrow = 3 - 16p^{2} - 16p^{2} = (4 - 12p)$ $\Rightarrow = 3 - 16p^{2} - 16p^{2} = (4 - 12p)$ $\Rightarrow = 3 - 16p^{2} + 8p^{2} + 8p^{2} = 0$ $\Rightarrow (10p - 4)(3p + 2) = 0 \text{ or } (5p - 2)(6p + 4) = 0 \Rightarrow p = \dots$ $\Rightarrow = 3 - 16p^{2} + 4p^{2} - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p = \dots$ $\Rightarrow = 3 - 16p^{2} + 4p^{2} - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p = \dots$ $\Rightarrow = 3 - 16p^{2} + 4p^{2} - 4 = 0 \Rightarrow (5p - 2)(3p + 2) = 0 \Rightarrow p = \dots$	
$= 3 - 12px + 30p^{2}x^{2} - 60p^{2}x^{2} + 4x - 16px^{2} + 40p^{2}x^{2}$ $\Rightarrow \qquad \qquad$	
$30p^{2}+8p-8=0$ $\Rightarrow (10p-4)(3p+2)=0 \text{ or } (5p-2)(6p+4)=0 \Rightarrow p=$ $Dependent \text{ on the 1st } M \text{ mark}$ Correct method for solving a 3TQ leading to at least one value. If working is shown see general guidance for solving 3TQs. If no working is shown then you may need to check to see if their 3TQ solves correctly.	dM1
$30p^{2}+8p-8=0$ $\Rightarrow (10p-4)(3p+2)=0 \text{ or } (5p-2)(6p+4)=0 \Rightarrow p=$ Correct method for solving a 3TQ leading to at least one value. If working is shown see general guidance for solving 3TQs. If no working is shown then you may need to check to see if their 3TQ solves correctly.	A1
	dM1
$\left\{ p = \frac{2}{5}, -\frac{2}{3} \Rightarrow \text{As } p > 0, \text{ then} \right\} p = \frac{2}{5} \qquad p = \frac{2}{5} \text{ only.}$	A1
	[5]
(c) $40\left(\frac{2}{5^{\dagger}}\right)^{2} - 60\left(\frac{2}{5^{\dagger}}\right)^{3}$ Substitutes their $p = \frac{2}{5}$ from part (b) into their coefficient of x^{3} (which comes from exactly 2 terms from their expansion)	M1
Coefficient of x^3 is $\frac{64}{25}$ Allow $\frac{64}{25}$ or $2\frac{14}{25}$. Condone 2.56. Allow $\frac{64}{25}x^3$, $2\frac{14}{25}x^3$, 2.56 x^3	A1
If 2 answers are offered, score A0	[2]
Ouestion A Notes	10
Question 4 Notes4. (a)M1Uses the binomial expansion with $n = -4$ and $'x' = px$.	
Note M1 can be given for either $1 + (-4)(px)$ or $\frac{(-4)(-5)}{2!}(px)^2$ or $\frac{(-4)(-5)(-6)}{3!}(px)^3$	
(b) Note Allow recovery in part (b) from missing brackets in part (a). e.g. px^2 now becoming p^2x^2 .	

(b) $\frac{fg(3) = e^{2\pi(3(3)-1)} - 5}{(NB fg(x) = 9x^2 - 6x - 4)}$ $g \text{ goes into f and } x = 3 \text{ is substituted into the result or finds } g(3) \{= \ln 8\} \text{ and substitutes}$ $M1$ $(ii)(a)$ $(iii)(a)$	Question Number	Scheme	Notes	Marks
(b) $x + 5 = e^{2y} \Rightarrow \ln(x + 5) = 2y$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow) \frac{1}{2}\ln(x + 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left\{ (f^{+}: x \rightarrow 5) \right\}$ $(y =) \frac{1}{2}\ln(x + 5) \left$	5.	$f: x \to e^{2x} - 5, x \in \mathbb{R}; g:$	$x \to \ln(3x-1), x \in \mathbb{R}, x > \frac{1}{3}$	
$(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left\{ \left(f^{-1}: x \rightarrow \right)\frac{1}{2}\ln(x + 5) \right\} $ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 59$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) \left(x + 5\right) = 50$ $(y -)\frac{1}{2}\ln(x + 5) = 50$ $(y -)\frac{1}{2}\ln(x + 5) = 50$ $(y -)\frac{1}{2}\ln(x + 5) = 50$ $(y -)\frac{1}{2}\ln(x$	(i) (a)	,	using correct processing so allow sign errors	M1
(ii) (a) (b) $fg(3) = e^{2ln(3(3)-1)} - 5 (NB fg(x) = 9x^{2} - 6x - 4)$ $f(NB fg(x) = 9x^{2} - 6x - 4)$ $f(ii)(a)$ (iii) (a) (iii) (a) (ii		_ (_)	Correct expression ignoring how it is referenced but must be in terms of <i>x</i> . Do not allow $\ln(x + 5) \cdot \frac{1}{2}$ or e.g. $\ln x + 5$ or $\ln(x + 5)$ unless the correct answer is seen previously or subsequently.	A1
(b) $\frac{fg(3) = e^{2\pi(3(3)-1)} - 5}{(NB fg(x) = 9x^2 - 6x - 4)}$ $g \text{ goes into f and } x = 3 \text{ is substituted into the result or finds } g(3) \{= \ln 8\} \text{ and substitutes}$ $M1$ $(ii)(a)$ $(iii)(a)$	-	Domain: $x > -5$ or $(-5, \infty)$	$x > -5$ or $(-5, \infty)$ Condone domain > -5	
(ii)(a) $ \frac{\left\{=e^{2bx}-5=64-5\right\}=59}{\left\{=59\right\}} = 59 = 59 = 59 = 59 = 59 = 59 = 59 = 5$	(b)	- • •		[3] M1
(ii)(a) (iii)(-			
(ii)(a) (i	-	$\left\{=e^{2\pi i \sigma}-5=64-5\right\}=59$	59 cao	
(b) $\begin{cases} 4x - a = 9a \Rightarrow \} x = \frac{10a}{4} \left\{ \text{or } x = \frac{5a}{2} \right\} \\ x = -2a \end{cases} \qquad x = -2a \end{cases} \qquad x = -2a \qquad x $	(ii)(a)			[2]
(b) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<i>x</i> -axis (with no significant asymmetry about the vertical through the vertex). The left hand branch must extend into the second quadrant. Do not allow a "y" shape unless the part below the <i>x</i> -axis is dotted or	B1
(b) $\begin{cases} 4x - a = 9a \Rightarrow \} x = \frac{10a}{4} \left\{ \text{or } x = \frac{5a}{2} \right\} \qquad x = \frac{10a}{4} \text{ or } x = \frac{9a + a}{4} \text{ or } x = \frac{5a}{2} \\ \text{(may be implied)} \end{cases} \text{B1}$ $- (4x - a) = 9a \text{or } 4x - a = -9a \qquad \text{Attempt at the "second" solution.} \\ \text{Accept } - (4x - a) = 9a \text{or } 4x - a = -9a \\ \text{or } -4x = 8a. \text{ Do not condone (unless recovered) invisible brackets in this case.} \end{cases} \text{M1}$ $\frac{x = -2a}{\left\{x = -2a \right\}} \left \frac{5}{2}a - 6a \right + 3\left \frac{5}{2}a \right ; = 11a}{\left\{x = -2a \Rightarrow \right\}} \left \frac{5}{2}a - 6a \right + 3\left -2a \right ; = 14a} \right\} \left \frac{5}{2}a - 6a \right + 3\left -2a \right ; = 14a} \qquad \left \frac{4a}{2}a + 6a \right + 3\left x \right \text{ or } x = \frac{9a + a}{4} \text{ or } x = \frac{5a}{2} \\ \text{(may be implied)} \\ \text{Attempt at the "second" solution.} \\ \text{Accept } - (4x - a) = 9a \text{ or } 4x - a = -9a \\ \text{or } -4x = 8a. \text{ Do not condone (unless recovered) invisible brackets in this case.} \\ \text{(may be implied)} \\ (may $	-	O $\frac{1}{4}a$ x	or $\frac{1}{4}a$ marked in the correct position on the <i>x</i> -axis and <i>a</i> marked in the correct position on the <i>y</i> -axis. Other points marked on the	
$ \begin{cases} -(4x-a) = 9a \text{or} 4x-a = -9a \\ x = -2a \end{cases} $ $ \begin{cases} x = \frac{5}{2}a \Rightarrow \\ x = -2a \end{cases} \begin{vmatrix} \frac{5}{2}a - 6a \end{vmatrix} + 3 \begin{vmatrix} \frac{5}{2}a \end{vmatrix}; = 11a \\ \{x = -2a \Rightarrow \} \begin{vmatrix} -2a - 6a \end{vmatrix} + 3 \begin{vmatrix} -2a \end{vmatrix}; = 14a \end{cases} $ $ \begin{cases} \text{Attempt at the "second" solution. \\ Accept - (4x - a) = 9a \text{or} 4x - a = -9a \\ \text{or} - 4x = 8a. \text{ Do not condone (unless recovered) invisible brackets in this case.} \end{cases} $ $ \begin{aligned} \text{M1} \\ \text{Attempt at the "second" solution. \\ Accept - (4x - a) = 9a \text{or} 4x - a = -9a \\ \text{or} - 4x = 8a. \text{ Do not condone (unless recovered) invisible brackets in this case.} \end{cases} $ $ \begin{aligned} \text{M1} \\ \text{Attempt at the "second" solution. \\ Accept - (4x - a) = 9a \text{or} 4x - a = -9a \\ \text{or} - 4x = 8a. \text{ Do not condone (unless recovered) invisible brackets in this case.} \end{cases} $ $ \begin{aligned} \text{M1} \\ \text{Substitutes at least one of their x values from solutions of } \begin{vmatrix} 4x - a \end{vmatrix} = 9a \text{ where } \\ x < 6a \text{ into } \begin{vmatrix} x - 6a \end{vmatrix} + 3 \begin{vmatrix} x \end{vmatrix} $ $ \begin{aligned} \text{M1} \\ \text{least one value for } \begin{vmatrix} x - 6a \end{vmatrix} + 3 \begin{vmatrix} x \end{vmatrix} $ $ \begin{aligned} \text{M1} \\ \text{H1} \\ \text{H2} \\ $	(b)	$\left\{4x - a = 9a \Longrightarrow\right\}$ $x = \frac{10a}{4}$ $\left\{\text{or } x = \frac{5a}{2}\right\}$	4 4 2	[2] B1
$\begin{cases} x = \frac{5}{2}a \Rightarrow \\ x = -2a \Rightarrow \\ 2x = -2a \Rightarrow \\ x = -2a $	-		Attempt at the "second" solution. Accept - $(4x - a) = 9a$ or $4x - a = -9a$ or $-4x = 8a$. Do not condone (unless	M1
$\begin{cases} x = \frac{5}{2}a \Rightarrow \\ x = -2a \Rightarrow$	F	x = -2a		A1
$ \{x = -2a \Rightarrow\} -2a - 6a + 3 - 2a ; = 14a $ $ Must apply the modulus. $ $ Both 11a and 14a and no other answers A1 $		$\left\{x = \frac{5}{2}a \Longrightarrow\right\} \left \frac{5}{2}a - 6a\right + 3\left \frac{5}{2}a\right ; = 11a$	from solutions of $\begin{vmatrix} 4x - a \end{vmatrix} = 9a$ where x < 6a into $\begin{vmatrix} x - 6a \end{vmatrix} + 3 \begin{vmatrix} x \end{vmatrix}$ and finds at	M1
Both $11a$ and $14a$ and no other answers A1		$\{x = -2a \Longrightarrow\} -2a - 6a + 3 - 2a ; = 14a$		
				Al
				[5] 12

		Question 5 Notes
		The values of x might be found by squaring:
		$ 4x - a = 9a \Longrightarrow 16x^2 - 8ax + a^2 = 81a^2 \Longrightarrow 16x^2 - 8ax - 80a^2 = 0$
(b)	Note	$16x^2 - 8ax - 80a^2 = 0 \Longrightarrow x = \frac{5a}{2}, -2a$
(0)	1,000	Score as follows: B1 for a correct 3 term quadratic (terms collected after squaring)
		M1: Solves their 3 term quadratic (usual rules)
		A1: $x = \frac{5a}{2}, -2a$

Question Number	Scheme Notes			М	
6.	$\sqrt{5}\cos q - 2\sin q \circ R\cos(q+a)$				
(a)	R = 3	/	$q \circ R\cos(q + a)$ $R = 3, \operatorname{cao} (\pm 3 \text{ is } B0) (\sqrt{9} \text{ is } B0)$ $R = 3, \operatorname{cao} (\pm 3 \text{ is } B0) (\sqrt{9} \text{ is } B0)$ $R = 3, \operatorname{cao} (\pm 3 \text{ is } B0) (\sqrt{9} \text{ is } B0)$ $R = 3, \operatorname{cao} (\pm 3 \text{ is } B0) (\sqrt{9} \text{ is } B0)$ $R = \frac{1}{\sqrt{5}} \Rightarrow \alpha = \dots, \text{ where "3" is their } R.)$ $M1$ $\frac{2}{3} \text{ or } \pm \frac{\sqrt{5}}{3} \Rightarrow \alpha = \dots, \text{ where "3" is their } R.)$ $Anything that rounds to 0.7297 (Degrees is 41.81 and scores A0)$ $Rq = 3\cos(q + 0.7297) \text{ [3]}$ $Rq = 3\cos(q + 0.7297) \text{ [3]}$ $Rq = 0.5$ $Rough $		
	$\tan \alpha = \pm \frac{2}{\sqrt{5}}, \ \tan \alpha = \pm \frac{\sqrt{5}}{2} \implies \alpha = \dots$ (Also allow $\cos \alpha = \pm \frac{\sqrt{5}}{3}$ or $\pm \frac{2}{3}$, $\sin \alpha = \pm \frac{2}{3}$ or $\pm \frac{\sqrt{5}}{3} \implies \alpha = \dots$, where "3" is their <i>R</i> .)		M1		
	$\alpha = 0.7297276562 \Rightarrow \alpha = 0.7297 $ (4 sf	5	Anything that rounds to 0.7297 (Degrees is	A1	
	{ Note : $\sqrt{5}\cos q$	- 2sin <i>q</i>	$y = 3\cos(q + 0.7297)$	[3]
(b)		$n \alpha - 2 \alpha$	$\sin \alpha = 0.5$		
(0)					
	$3\cos(\theta + 0.7297) = 0.5$	-			
		_		M1	
	$\Rightarrow \cos(\theta + 0.7297) = \frac{0.5}{3}$	-		IVII	
	$\theta_1 = 0.673648 \Rightarrow \theta_1 = 0.674 (3 \text{ sf})$	Anythi	ng that rounds to 0.674	A1	
	$\theta_2 + "0.7297" = "-1.4033" \Longrightarrow \theta_2 = \dots$	Correc Usually		dM1	
	$\theta_2 = -2.133048 \Rightarrow \theta_2 = -2.13 (3 \text{ sf})$ Anything that rounds to -2.13				_
	For solutions in (b) that are otherwise fully correct, if there are extra answers in the range, deduct the final A mark.			A1	
			in (a) and (b) allow awrt 38.6° and $awrt - 122^{\circ}$ will be lost in part (a)		
(a)				[4	1
(c)	N N N N N N N N N N N N N N N N N N N	,	$B, \theta \in \mathbb{R}; -15 \leq f(x) \leq 33$		
	$\Rightarrow -15 \leqslant 3A\cos(\theta + 0.730) + B \leqslant 33$				
	Note that part (c)	is now 1	marked as B1M1A1A1	Di	
	B = 9		Correct value for <i>B</i>	B1	
	3A + B = 33-3A + B = -15 or $3A + B = -15-3A + B = 32$		Writes down at least one pair of simultaneous equations (or inequalities) of the form		
	A = 8 or $A = -8$		One correct value for A	A1	
	A = 8 and $A = -8$		Both values correct	A1	
				[4	·]
				1	1

(c)	Note	The M mark may be implied by	y correct answers so obtaining A = 8 implies M1A	l
			Question 6 Notes	
				[4]
		A = 8 and $A = -8$	Both values correct	A1
		A = 8 or $A = -8$	One correct value for A	A1
		$3A = 33 - 9 \Longrightarrow A = 8$	(their R) $A = 33$ – their $B \Longrightarrow A =$	M1
(c) Alt 2		$B = \frac{33 - 15}{2} = 9$	Correct value for <i>B</i>	B1
				[4]
		A=8 and $A=-8$	Both values correct	A1
		A = 8 or $A = -8$	One correct value for A	A1
		(2)(A)(3) = 3315	(2)(A)(their R) = $33 - 15 \Rightarrow A =$	M1
(c) Alt 1		<i>B</i> = 9	Correct value for <i>B</i>	B1

Question Number		Scheme	Notes	Marks
7.		$V = \frac{1}{3}\rho h^2 (90 - h) = 30\rho h^2 -$	$\frac{1}{3}\rho h^3; \ \frac{\mathrm{d}V}{\mathrm{d}t} = 180$	
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 60\rho h - \rho h^2$	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}=\right\}\pm ah\pm bh^2,\ a\neq 0,\ b\neq 0$	M1
		dh dh	$60\rho h - \rho h^2$ Can be simplified or un-simplified.	A1
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\times\right.$	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Longrightarrow \left\{ \left(60\rho h - \rho h^2 \right) \frac{\mathrm{d}h}{\mathrm{d}t} = 180 \right.$	$\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 180$	
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\right\}$	$\frac{V}{dt} \div \frac{dV}{dh} \Longrightarrow \bigg\} \frac{dh}{dt} = 180 \times \frac{1}{60\pi h - \pi h^2}$	or $180 \div \text{their } \frac{dV}{dh}$ This is for a correct application of the chain rule and not for just quoting a correct chain rule.	M1
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\}$	When $h = 15$, = $\left\{ \frac{1}{60\rho(15) - \rho(15)^2} \times 180 \left\{ = \frac{4}{15\rho} \right\} \right\}$	Dependent on the previous M mark. Substitutes $h = 15$ into an expression which is a result of a quotient (or their rearranged quotient) of their $\frac{dV}{dh}$ and 180. May be implied by awrt 0.08 or 0.09.	dM1
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}=0.0\right\}$	$0848826 \Rightarrow \left\{ \frac{\mathrm{d}h}{\mathrm{d}t} = \underline{0.085} (\mathrm{cms^{-1}}) (2 \mathrm{sf}) \right\}$	Awrt 0.085 or allow $\frac{4}{15\pi}$ oe (and isw if necessary)	A1 cao
				[5]
		Alternative Method for t	he first M1A1	5
		Product rule: $\begin{cases} u = \frac{1}{3}\rho h^2 \\ \frac{du}{dh} = \frac{2}{3}\rho h \end{cases}$		
	<u>dV</u>	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\right\}$	$= \begin{cases} \pm \alpha h(90 - h) \pm \beta h^2(-1), \ \alpha \neq 0, \ \beta \neq 0 \\ \text{e simplified or un-simplified.} \end{cases}$	M1
	d <i>h</i>	$\frac{2}{3}ph(1)$	90 - h) + $\frac{1}{3}\rho h^2(-1)$ e simplified or un-simplified.	A1
		dV		1
7.	Note	$\frac{1}{dh}$ does not have to be explicitly stated for that they are differentiating their V.	or the 1 st M1 and/or the 1 st A1 but it should	be clear
	Note	5 un 5	- h) scores M0A0 even though it satisfies the	ie
		conditions for the derivative.		

Question Number	Scheme	Notes	Marks		
8.	$l_1: \mathbf{r} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ l_2: \mathbf{r} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}; \text{ Let } \theta = \text{acute angle between } PQ \text{ and } l_1.$				
(a)		$= 6 + \mu (1)$			
	$\mathbf{j}:-3+2\lambda=4+\mu (2)$				
	$\mathbf{k}: 2 + 3\lambda =$	$=1-\mu$ (3)			
	(1) and (2) yields $l = 2, m = -3$ (1) and (3) yields $\lambda = 1, \mu = -4$	Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$	M1		
	(2) and (3) yields $/ = 1.2, m = -4.6$	/ and <i>m</i> are both correct	A1		
	Checking (3): $8 \neq 4$ Checking (2): $-1 \neq 0$	Attempts to show a contradiction	M1		
	Checking (1): $2.2 \neq 1.4$ l_1 and l_2 do not intersect.	Correct comparison and a conclusion. Accept "do not meet" and accept "are skew". Requires all previous work to be correct.	A1		
	Allow a calculation that gives " $8 = 4$ so the lines do not meet"				
	Allow a calculation that gives	" $8 = 4$ so the lines do not meet"			
			[4]		
		e for part (a):	[4]		
		for part (a): Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$	[4] M1		
		e for part (a): Attempts to solve a pair of equations			
	(1) and (2) yields / = 2, m = -3	e for part (a): Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$ Shows any two of			
	Alternative	<pre>e for part (a): Attempts to solve a pair of equations to find at least one of either / = or m = Shows any two of (1) and (2) yielding / = 2 (1) and (3) yielding / = 1</pre>			
	(1) and (2) yields $/ = 2, m = -3$ (1) and (3) yields $/ = 1, m = -4$	<pre>e for part (a): Attempts to solve a pair of equations to find at least one of either / = or m = Shows any two of (1) and (2) yielding / = 2 (1) and (3) yielding / = 1 (2) and (3) yielding / = 1.2 or shows any two of (1) and (2) yielding m = -3</pre>	M1		
	(1) and (2) yields $/ = 2, m = -3$ (1) and (3) yields $/ = 1, m = -4$	<pre>e for part (a): Attempts to solve a pair of equations to find at least one of either / = or m = Shows any two of (1) and (2) yielding / = 2 (1) and (3) yielding / = 1 (2) and (3) yielding / = 1.2 or shows any two of</pre>	M1		
	(1) and (2) yields $/ = 2, m = -3$ (1) and (3) yields $/ = 1, m = -4$ (2) and (3) yields $/ = 1.2, m = -4.6$	a for part (a): Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$ Shows any two of (1) and (2) yielding $/ = 2$ (1) and (3) yielding $/ = 1$. (2) and (3) yielding $/ = 1.2$ or shows any two of (1) and (2) yielding $m = -3$ (1) and (3) yielding $m = -4$	M1		
	(1) and (2) yields $/ = 2, m = -3$ (1) and (3) yields $/ = 1, m = -4$	e for part (a):Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$ Shows any two of (1) and (2) yielding $/ = 2$ (1) and (3) yielding $/ = 1$ (2) and (3) yielding $/ = 1.2$ or shows any two of(1) and (2) yielding $m = -3$ (1) and (2) yielding $m = -4$ (2) and (3) yielding $m = -4.6$	M1 A1		

(b)	$\overrightarrow{OP} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \overrightarrow{OQ} = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$		
	$(\overline{10}, 1)$ $\begin{pmatrix} 5\\ 2 \end{pmatrix}$ $\begin{pmatrix} 1\\ 2 \end{pmatrix}$ $\begin{pmatrix} 4\\ 5 \end{pmatrix}$ $\begin{pmatrix} -4\\ 5 \end{pmatrix}$ $\begin{pmatrix} -4\\ 5 \end{pmatrix}$	Full method of finding \overrightarrow{PQ} or \overrightarrow{QP} where P and Q have been found by using $\lambda = 0$ in l_1 and $\mu = -1$ in l_2	M1
	$\left(\overrightarrow{PQ}=\right)\begin{pmatrix}5\\3\\2\end{pmatrix}-\begin{pmatrix}1\\-3\\2\end{pmatrix}=\begin{pmatrix}4\\6\\0\end{pmatrix}\text{ or }\left(\overrightarrow{QP}=\right)\begin{pmatrix}-4\\-6\\0\end{pmatrix}$	Correct \overrightarrow{PQ} or \overrightarrow{QP} . Also allow for direction, $\mathbf{d}_{PQ} = 2\mathbf{i} + 3\mathbf{j} + 0\mathbf{k}$ and allow coordinates e.g. (4, 6, 0)	A1
	$\mathbf{d}_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \mathbf{d}_{PQ} = \begin{pmatrix} 4 \\ 6 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 6 \\ 0 \end{pmatrix}$	Realisation that the dot product is required between $\pm A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and their } \overline{PQ} \text{ or } \overline{QP}$	M1
	$\cos q = \pm \left(\frac{(1)(4) + (2)(6) + (3)(0)}{\sqrt{(1)^2 + (2)^2 + (3)^2} \cdot \sqrt{(4)^2 + (6)^2 + (0)^2}} \right)^{\frac{1}{2}}$	Dependent on the previous M mark. An attempt to apply the dot product formula between $\pm A \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and their \overrightarrow{PQ} or \overrightarrow{QP}	dM1
	$\cos \theta = \frac{16}{\sqrt{14}.\sqrt{52}} \Rightarrow \theta = 53.62985132 = 53.63 \ (2 \text{ dp})$	Anything that rounds to 53.63	A1
			[5]

(c)	d .	et trigonometric equation involving d. e.g. $\frac{d}{\text{their } PQ} = \sin q$, o.e.	M1
	$\left\{ d = \sqrt{52} \sin 53.63 \Rightarrow \right\} d = 5.8064 = 5.81 (3 \text{ sf})$	Anything that rounds to 5.81	A1
			[2]
	Alternative for part (c): (Let <i>M</i> be the po	pint on l_1 closest to Q)	
	$\overrightarrow{OM} = \begin{pmatrix} 1\\ -3\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \Rightarrow \overrightarrow{QM} = \begin{pmatrix} 1\\ -3\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} - \begin{pmatrix} 5\\ 3\\ 2 \end{pmatrix}$ $\begin{pmatrix} \lambda - 4\\ 2\lambda - 6\\ 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} = 0 \Rightarrow \lambda - 4 + 4\lambda - 12 + 9\lambda = 0$ $\begin{pmatrix} \lambda - 4\\ 2\lambda - 6\\ 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} = \lambda - 4 + 4\lambda - 12 + 9\lambda = 0 \Rightarrow \lambda = \frac{8}{7}$ $\lambda = \frac{8}{7} \Rightarrow \overrightarrow{QM} = \frac{1}{7} \begin{pmatrix} -20\\ -26\\ 24 \end{pmatrix} \Rightarrow \overrightarrow{QM} = \frac{1}{49}\sqrt{20^2 + 26^2 + 24^2}$	Applies a complete and correct method that leads to an expression for the shortest distance	M1
	$=\sqrt{\frac{236}{7}}=5.81$	Anything that rounds to 5.81	A1
			[2]
			11

Question Number	Scheme	Notes	Marks
9.	$f(x) = \frac{12}{(2x - x)^2}$	$\frac{1}{1}, 1 \le x \le 5; \ y = \frac{4}{3}$	
	$(1)^{-1}$	$(2x-1)^{-2} \to \pm / (2x-1)^{-1} \text{ or } \pm / u^{-1}$ where $u = 2x \pm 1; \lambda \neq 0$	M1
(a)	$\left\{ \int \frac{1}{(2x-1)^2} \mathrm{d}x \right\} = \frac{(2x-1)^{-1}}{(-1)(2)} \left\{ +c \right\}$	$\left(\frac{(2x-1)^{-1}}{(-1)(2)}\right) \text{ or } -\frac{1}{2(2x-1)} \text{ oe with or without } +c.$	A1
		Can be simplified or un-simplified.	[2]
(b)	$\rho \int \left(\frac{12}{2x-1}\right)^2 \mathrm{d}x$	For $\pi \int \left(\frac{12}{2x-1}\right)^2 dx$ or $\pi \int \frac{144}{(2x-1)^2} dx$ Ignore limits and dx . Can be implied and the π may be recovered later.	B1
	$V_{1} = 1$	$44\rho \left[\frac{-1}{2(2x-1)}\right]_{1}^{5}$	
	144()((-1))(-1))	Applies x-limits of 5 and 1 to an expression of the form $\pm \beta (2x-1)^{-1}$; $\beta \neq 0$ and subtracts the correct way round.	M1
	$= 144(\pi) \left(\left(\frac{-1}{2(2(5)-1)} \right) - \left(\frac{-1}{2(2(1)-1)} \right) \right)$	Correct expression for the integrated volume with or without the π . Can be simplified or un-simplified. Can be implied by 64 or 64 ρ .	A1
	$\begin{cases} = -72(x) \end{cases}$	$\tau \left(\frac{1}{9} - 1\right) = 64(\pi) \right\}$	
	Note: $\pi \int_{1}^{5} \left(\frac{12}{2x-1}\right)^2 dx$ or $\int_{1}^{5} \left(\frac{12}{2x-1}\right)^2 dx$	x evaluated directly as 64π or 64 with no incorrect	
	working seen scores M	11A1 (presumably on a calculator)	
		Attempts to use the formula pr^2h with numerical r and h with at least one of $r = \frac{4}{3}$ or $h = 4$ correct	M1
	$\left\{V_{\text{cylinder}}\right\} = \rho\left(\frac{4}{3^{\dagger}}\right)^2 (4) \left\{=\frac{64}{9}\rho\right\}$	or attempts $\pi \int_{1}^{5} \left(\frac{4}{3}\right)^{2} dx$ or $\pi \int_{0}^{5} \left(\frac{4}{3}\right)^{2} dx$	
		Correct expression for V_{cylinder}	
		$p\left(\frac{4}{37}\right)^2$ (4) or $\frac{64}{9}p$ implies this mark	A1
	$\left\{ \operatorname{Vol}(R) = 64\rho - \frac{64\rho}{9} \right\} \Longrightarrow \operatorname{Vol}(R) = \frac{64\rho}{9}$	$\frac{512}{9}\rho$ $\frac{512}{9}\rho$ or $56\frac{8}{9}\rho$	A1
			[6] 8
		Question 9 Notes	0
9. (b)	Note See extra notes below for how	to mark attempts at $\pi \int_{1}^{5} \left(\left(\frac{12}{2x-1} \right) - \left(\frac{4}{3} \right) \right)^{2} dx$	
	Note An acceptable approach is π	$\int_{-\infty}^{\infty} \left(\left(\frac{12}{2x-1}\right)^2 - \left(\frac{4}{3}\right)^2 \right) dx$	

Attempts at
$$\pi \int_{1}^{5} \left(\left(\frac{12}{2x-1} \right) - \left(\frac{4}{3} \right) \right)^{2} dx$$
:

$$V = \pi \int_{1}^{5} \left(\frac{12}{2x-1} - \frac{4}{3} \right)^{2} dx = \pi \int_{1}^{5} \left(\frac{144}{(2x-1)^{2}} - \frac{32}{2x-1} + \frac{16}{9} \right) dx$$
B1 for the embedded $\rho \int \left(\frac{12}{2x-1} \right)^{2} dx$ (π may be recovered later)

$$= \pi \left[-\frac{72}{2x-1} - 16 \ln(2x-1) + \frac{16}{9}x \right]_{1}^{5}$$

$$= \pi \left[\left(-\frac{72}{9} - 16 \ln 9 + \frac{80}{9} \right) - \left(-72 + \frac{16}{9} \right) \right]$$
M1A1 for the embedded $-\frac{72}{9} - (-72)$ or $\left(-\frac{72}{9} - (-72) \right) \pi$
 $\left(= \frac{640}{9} \pi - 48 \ln 9 \right)$

$$V = \pi \int_{1}^{5} \left(\frac{12}{2x-1} - \frac{4}{3}\right)^{2} dx = \pi \int_{1}^{5} \left(\frac{144}{(2x-1)^{2}} + \frac{16}{9}\right) dx$$

B1 for the embedded $\rho \int \left(\frac{12}{2x-1}\right)^{2} dx$ (π may be recovered later)
 $= \pi \left[-\frac{72}{2x-1} + \frac{16}{9}x \right]_{1}^{5}$
 $= \pi \left[\left(-\frac{72}{9} + \frac{80}{9} \right) - \left(-72 + \frac{16}{9} \right) \right]$
M1A1 for the embedded $-\frac{72}{9} - (-72)$ or $\left(-\frac{72}{9} - (-72) \right) \pi$
 $\left(= \frac{640}{9} \pi \right)$

$$V = \pi \int_{1}^{5} \left(\frac{12}{2x-1} - \frac{4}{3}\right)^{2} dx = \pi \int_{1}^{5} \left(\frac{144}{(2x-1)^{2}} - \frac{16}{9}\right) dx$$

B1 for the embedded $\rho \int \left(\frac{12}{2x-1}\right)^{2} dx$ (π may be recovered later)
 $= \pi \left[-\frac{72}{2x-1} - \frac{16}{9}x\right]_{1}^{5}$
 $= \pi \left[\left(-\frac{72}{9} - \frac{80}{9}\right) - \left(-72 - \frac{16}{9}\right)\right]$
M1A1 for the embedded $-\frac{72}{9} - (-72)$ or $\left(-\frac{72}{9} - (-72)\right)\pi$
 $\left(=\frac{512}{9}\pi\right)$

$C: xe^{5-2y} - y = 0$ or $\ln x + 5 - 2$	$2y - \ln y =$	= 0; $P(2e^{-1}, 2)$ lies on C.	
Either • $e^{5-2y} - 2xe^{5-2y}\frac{dy}{dx} - \frac{dy}{dx}(=0)$	$\pm Ae^{5-2y}$	$\pm Bxe^{5-2y}\frac{\mathrm{d}y}{\mathrm{d}x}\pm\frac{\mathrm{d}y}{\mathrm{d}x}\left(=0\right)$	
• $e^{5-2y} - 2y \frac{dy}{dy} - \frac{dy}{dy} = 0$		ur ur	M1
• $\frac{1}{x} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	or $\pm \frac{\mathrm{d}x}{\mathrm{d}y} =$	$= \pm A e^{\pm \alpha \pm 2y} \pm B y e^{\pm \alpha \pm 2y}$	
dy dy		un un	
• $e^5 = e^{2y} \frac{dy}{dx} + 2y e^{2y} \frac{dy}{dx}$	Correct di	fferentiation. The " $= 0$ " may be	A1
Ignore any " $\frac{dy}{dx}$ =" in from the second seco	ont of their	differentiation	
At P, $e^{5-2(2)} - 2(2e^{-1})e^{5-2(2)}\frac{dy}{dx} - \frac{dy}{dx} = 0$ $\Rightarrow e - 4\frac{dy}{dx} - \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{e}{5}$	find a num have extra rearranged substitutin	nerical value for $\frac{dy}{dx}$ or $\frac{dx}{dy}$. Could a or fewer $\frac{dy}{dx}$ terms and may have d their expression wrongly before	M1
5(C) C	(y - 2)	Dependent on the previous M mark. A correct attempt at an equation of the tangent at the point $P(2e^{-1}, 2)$ using their numerical $\frac{dy}{dx}$. If using $y = mx + c$ must reach as far as $c =$	d M1
		Finds at least one correct intercept. For $-\frac{8}{e}$, allow awrt -2.94.	A1
	Depender	nt on both previous M marks.	
Area $OAB = \frac{1}{2} \left(\frac{8}{e}\right) \left(\frac{8}{5}\right)$	and y_B are	exact. Condone a method that gives a	dd M1
$=\frac{32}{5e} \text{ or } \frac{32}{5}e^{-1}$	Ŭ		A1
			[7]
		Notes tiation e.g. $e^{5-2y}dx - 2xe^{5-2y}dy - dy = 1$	
	Either • $e^{5-2y} - 2xe^{5-2y}\frac{dy}{dx} - \frac{dy}{dx}(=0)$ • $e^{5-2y} - 2y\frac{dy}{dx} - \frac{dy}{dx}(=0)$ • $\frac{1}{x} - 2\frac{dy}{dx} - \frac{1}{y}\frac{dy}{dx}(=0)$ • $\frac{dx}{dy} = e^{2y-5} + 2ye^{2y-5}$ • $e^5 = e^{2y}\frac{dy}{dx} + 2ye^{2y}\frac{dy}{dx}$ Ignore any " $\frac{dy}{dx} = $ " in fr At <i>P</i> , $e^{5-2(2)} - 2(2e^{-1})e^{5-2(2)}\frac{dy}{dx} - \frac{dy}{dx} = 0$ $\Rightarrow e - 4\frac{dy}{dx} - \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{e}{5}$ • $y - 2 = \frac{e}{5}\left(x - \frac{2}{e^{\frac{1}{7}}}$ or $x - \frac{2}{e} = 5e^{-1}$ • $2 = \frac{e}{5}(2e^{-1}) + c \Rightarrow c = \frac{8}{5} \Rightarrow y = \frac{1}{5}$ $y = 0 \Rightarrow -2 = \frac{e}{5}\left(x - \frac{2}{e^{\frac{1}{7}}} \Rightarrow x = -\frac{8}{e} \left\{\Rightarrow A\left(x = 0 \Rightarrow y - 2 = \frac{e}{5}\left(-\frac{2}{e^{\frac{1}{7}}} \Rightarrow y = \frac{8}{5}\right)\right\}$ Area $OAB = \frac{1}{2}\left(\frac{8}{e}\right)\left(\frac{8}{5}\right)$	Either • $e^{5-2y} - 2xe^{5-2y}\frac{dy}{dx} - \frac{dy}{dx}(=0)$ • $e^{5-2y} - 2y\frac{dy}{dx} - \frac{dy}{dx}(=0)$ • $\frac{1}{x} - 2\frac{dy}{dx} - \frac{1}{y}\frac{dy}{dx}(=0)$ • $\frac{1}{x} - 2\frac{dy}{dx} - \frac{1}{y}\frac{dy}{dx}(=0)$ • $\frac{dx}{dy} = e^{2y-5} + 2ye^{2y-5}$ • $e^5 = e^{2y}\frac{dy}{dx} + 2ye^{2y}\frac{dy}{dx}$ Ignore any " $\frac{dy}{dx} =$ " in front of their Mat P , $e^{5-2(2)} - 2(2e^{-1})e^{5-2(2)}\frac{dy}{dx} - \frac{dy}{dx} = 0$ $\Rightarrow e - 4\frac{dy}{dx} - \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{e}{5}$ • $y - 2 = \frac{e}{5}\left(x - \frac{2}{e^{\frac{1}{7}}}\right)$ or $x - \frac{2}{e} = 5e^{-1}(y - 2)$ • $2 = \frac{e}{5}(2e^{-1}) + c \Rightarrow c = \frac{8}{5} \Rightarrow y = \frac{e}{5}x + \frac{8}{5}$ $y = 0 \Rightarrow -2 = \frac{e}{5}\left(x - \frac{2}{e^{\frac{1}{7}}}\Rightarrow x = -\frac{8}{e} \left\{\Rightarrow A\left(-\frac{8}{e}, 0^{\frac{1}{7}}\right\}\right\}$ $x = 0 \Rightarrow y - 2 = \frac{e}{5}\left(-\frac{2}{e^{\frac{1}{7}}}\Rightarrow y = \frac{8}{5} \left\{\Rightarrow B\left(0,\frac{8}{5}\right)\right\}$ Area $OAB = \frac{1}{2}\left(\frac{8}{e}\right)\left(\frac{8}{5}\right)$ Question 10 N	Fither Obtains either• $e^{5-2y} - 2xe^{5-2y} \frac{dy}{dx} - \frac{dy}{dx}(=0)$ Obtains either• $e^{5-2y} - 2y\frac{dy}{dx} - \frac{dy}{dx}(=0)$ $xe^{5-2y} \pm Bxe^{5-2y} \frac{dy}{dx} \pm \frac{dy}{dx}(=0)$ • $\frac{1}{x} - 2\frac{dy}{dx} - \frac{1}{y}\frac{dy}{dx}(=0)$ $r \pm Ae^{5-2y} \pm Bye^{5y} \frac{dy}{dx} \pm \frac{dy}{dx}(=0)$ • $\frac{1}{x} - 2\frac{dy}{dx} - \frac{1}{y}\frac{dy}{dx}(=0)$ $r \pm Ae^{5-2y} \pm Bye^{5y} \frac{dy}{dx} \pm \frac{dy}{dx}(=0)$ • $\frac{dx}{dy} = e^{2y-5} + 2ye^{2y-5}$ $r \pm Ae^{5-2y} \pm Bxe^{5-2y} \frac{dy}{dx} \pm Bye^{2y-2y} \frac{dy}{dx}$ • $e^{5} = e^{2y} \frac{dy}{dx} + 2ye^{2y} \frac{dy}{dx}$ $Correct differentiation$ Ignore any " $\frac{dy}{dx} = \frac{e}{5}$ If form of their differentiationAt $P, e^{5-2(3)} - 2(2e^{-1})e^{5-2(3)}\frac{dy}{dx} - \frac{dy}{dx} = 0$ Uses $P(2e^{-1}, 2)$ and their gradient equation to find a numerical value for $\frac{dy}{dx}$ or $\frac{dy}{dy}$. CouldAt $P, e^{5-2(3)} - 2(2e^{-1})e^{5-2(3)}\frac{dy}{dx} - \frac{dy}{dx} = \frac{e}{5}$ $Here extra or fewer \frac{dy}{dx} terms and may have rearranged their expression wrongly before substituting. Accept \frac{dy}{dx} = awrt 0.54 as evidence.\begin{cases} m_r = \frac{e}{5} \Rightarrow \end{cases}e^{5} x + \frac{8}{5}•y - 2 = \frac{e}{5}(x - \frac{2}{e^{+}}) or x - \frac{2}{e} = 5e^{-1}(y - 2)•2 = \frac{e}{5}(2e^{-1}) + c \Rightarrow c = \frac{8}{5} \Rightarrow y = \frac{e}{5}x + \frac{8}{5}y = 0 \Rightarrow -2 = \frac{e}{5}(x - \frac{2}{e^{+}}) \Rightarrow x = -\frac{8}{e} \left\{ \Rightarrow A\left(-\frac{8}{e}, 0\right) \frac{5}{5} \right\}x = 0 \Rightarrow y - 2 = \frac{e}{5}\left(-\frac{2}{e^{+}}\right) \Rightarrow y = \frac{8}{5} \left\{ \Rightarrow B\left(0, \frac{8}{5}\right) \right\}Area OAB = \frac{1}{2}\left(\frac{8}{e}\right)\left(\frac{8}{5}\right)Area OAB = \frac{1}{2}\left(\frac{8}{e}\right)\left(\frac{8}{5}\right)Area OAB = \frac{1}{2}\left(\frac{8}{e}\right)\left(\frac{8}{5}\right)Dependent on both previous M marks. Applies \frac{1}{2} (the$

Note	The 2 nd and 3 rd method marks are available for work in decimals but the final method mark requires exact work.
Note	Accept y' for $\frac{dy}{dx}$

Question Number	Scheme	Notes	Marks		
11. (a)	$x = 3\sec q = \frac{3}{\cos q} = 3(\cos q)^{-1}$				
	$\frac{\mathrm{d}x}{\mathrm{d}q} = -3(\cos q)^{-2}(-\sin q)$	$\frac{\mathrm{d}x}{\mathrm{d}q} = \pm k \Big((\cos q)^{-2} (\sin q) \Big)$	M1		
	$\frac{dq}{dq} = \begin{cases} \frac{3\sin q}{\cos^2 q} \\ = \underbrace{\left(\frac{3}{\cos q}\right)}_{\cos q} \underbrace{\left(\frac{\sin q}{\cos q}\right)}_{\cos q} = \underbrace{3\sec q \tan q}_{\sigma} * \\ \frac{dx}{d\theta} \\ = \begin{cases} \frac{3\sin \theta}{\cos^2 \theta} \\ = \underbrace{\left(\frac{3}{\cos \theta}\right)}_{\cos \theta} \underbrace{\left(\tan \theta\right)}_{\sigma} \\ = \underbrace{3\sec \theta \tan \theta}_{\sigma} * \\ \frac{dx}{d\theta} \\ = \begin{cases} \frac{3\sin \theta}{\cos^2 \theta} \\ = \underbrace{\left(\frac{3\tan \theta}{\cos \theta}\right)}_{\cos \theta} \\ = \underbrace{\left(\frac{3\tan \theta}{\cos \theta}\right)}_{\cos \theta} \\ = \underbrace{3\sec \theta \tan \theta}_{\sigma} \end{cases}$	Convincing proof with no notational or other errors such as missing θ 's or missing signs or inconsistent variables. But use of $\cos^{-1}\theta$ as $\frac{1}{\cos\theta}$ is OK. Must see both <u>underlined steps</u> . Allow $3\tan\theta \sec\theta$	A1 *		
	If the $\frac{dx}{d\theta}$ is included on the lhs it must be correct but possible if it appears correctly at some		[2]		
(a) Alt 1	$x = 3\sec q = \frac{3}{\cos q}$ $\left(\begin{array}{c} u = 3 \\ v = \cos q \end{array}\right)$				
	$\begin{cases} u = 3 \qquad v = \cos q \\ \frac{\mathrm{d}u}{\mathrm{d}q} = 0 \qquad \frac{\mathrm{d}v}{\mathrm{d}q} = -\sin q \end{cases}$				
	$\frac{\mathrm{d}x}{\mathrm{d}q} = \frac{0(\cos q) - (3)(-\sin q)}{(\cos q)^2}$	Accept $\frac{0 \times (\cos \theta) \pm (3)(\sin \theta)}{(\cos \theta)^2}$ as evidence but if the quotient rule is quoted, it must be correct.	M1		
	$\frac{\mathrm{d}x}{\mathrm{d}q} = \left\{\frac{3\sin q}{\cos^2 q}\right\} = \left(\frac{3}{\cos q^{\frac{1}{2}}}\left(\frac{\sin q}{\cos q^{\frac{1}{2}}}\right) = \frac{3\sec q \tan q}{\operatorname{Or}} * \frac{\mathrm{d}x}{\mathrm{d}\theta} = \left\{\frac{3\sin \theta}{\cos^2 \theta}\right\} = \left(\frac{3}{\cos \theta}\right)(\tan \theta) = \frac{3\sec \theta \tan \theta}{\operatorname{Sec} \theta \tan \theta} *$	Convincing proof with no notational or other errors such as missing θ 's. Must see both <u>underlined steps</u> . Allow $3\tan\theta\sec\theta$	A1 *		
1			+		
	If the $\frac{dx}{d\theta}$ is included on the lhs it must be correct but possible if it appears correctly at some				

(b)		$y = \frac{\sqrt{x^2 - 9}}{x}, x \ge 3; \ x = 3\sec\theta =$	$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}x} = 3\sec\theta\tan\theta$	
	$\int \frac{\sqrt{x^2}}{x}$	$\frac{1}{-9} dx = \int \frac{\sqrt{((3\sec\theta)^2 - 9)}}{3\sec\theta} 3\sec\theta \tan\theta d\theta$	$\frac{d\theta}{\int \frac{d\theta}{x}}$ Full substitution of $\frac{\sqrt{x^2 - 9}}{x}$ in terms of q and "dx" as their " $\pm k \sec q \tan q$ ". This may be implied if they reach $\pm \lambda \int \tan^2 \theta \{ d\theta \}$ with no incorrect working seen.	M1
	Note	: If $\sqrt{x^2 - 9}$ is simplified incorrectly to $x - 3$ the substitution. (Any subsequent relations is the substitution of the subsequent relations) is the substitution of the subsequence of the subseque	he first mark is still available for a full	
			$\pm \lambda \int \tan^2 \theta \{ d\theta \}$ (Allow $\pm \lambda \int \tan \theta \tan \theta \{ d\theta \}$)	M1
		$= 3 \int \tan^2 \theta \mathrm{d}\theta$	$3\int \tan^2\theta \{d\theta\}$ (Allow 3) $\tan\theta \tan\theta \{d\theta\}$)	A1
		$= (3) \int (\sec^2 \theta - 1) \mathrm{d}\theta$	Dependent on the previous M mark applies $\tan^2 q = \sec^2 q - 1$	dM1
		$=(3)(\tan\theta-\theta)$	$k \tan^2 \theta \rightarrow k (\tan \theta - \theta)$	A1
		$\begin{cases} \operatorname{Area}(R) = \int_{3}^{6} \frac{\sqrt{(x^{2} - 9)}}{x} \mathrm{d}x = \end{cases}$	$= \left[3\tan q - 3q\right]_{0}^{\frac{\rho}{3}}$	
		$= \left(3\tan\left(\frac{p}{3\frac{1}{2}}\right) - 3\left(\frac{p}{3\frac{1}{2}}\right) - (0)\right)$	Substitutes limits of $\frac{p}{3}$ and 0 into an expression that contains a trigonometric and an algebraic function and subtracts the correct way round. [Note: Limit of 0 can be implied.] If they return to <i>x</i> , they must substitute the limits 6 and 3 and subtract the correct way round having previously obtained a trigonometric and an algebraic function.	M1
		$=3\sqrt{3}-p$	$3\sqrt{3} - p$	A1
	$[3 \tan \theta -$	$3\theta \Big]_0^{\frac{\pi}{3}} = 3\sqrt{3} - \pi$ can score the final M1A1 but is incorrect, score		
				[7]
		Question 1	1 Notes	9
11. (a)	Note	$x = \frac{3}{\cos\theta} \Rightarrow x\cos\theta = 3 \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta}\cos\theta - x\sin\theta$		A1.
(b)	Note	A decimal answer of 2.054559769 (witho		

Question Number	Scheme	Notes	Marks
12.	$\cot x - \tan x \equiv$	$\equiv 2\cot 2x$	
(a)	$\cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x}$	Attempts to write both $\cot x$ and $\tan x$ in terms of $\sin x$ and $\cos x$ only	M1
	$= \frac{\cos^2 x}{\sin x \cos x} - \frac{\sin^2 x}{\cos x \sin x} \left(= \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \right)$	Dependent on the previous M mark Attempts to find the same denominator for both fractions	dM1
	$= \frac{\cos 2x}{\frac{1}{2}\sin 2x} \left(=\frac{2\cos 2x}{\sin 2x}\right)$	Dependent on both the previous M marks. Evidence of correctly applying either $\cos 2x = \cos^2 x - \sin^2 x$ or $\sin 2x = 2\sin x \cos x$	ddM1
	$= 2\cot 2x (*)$	Correct proof with no notational or other errors such as missing <i>x</i> 's or inconsistent variables.	A1 *
			[4]
(a) Alt 1	$\cot x - \tan x = \frac{1}{\tan x} - \tan x$	Writes $\cot x$ in terms of $\tan x$	M1
	$\frac{1}{\tan x} - \frac{\tan^2 x}{\tan x} \left(= \frac{1 - \tan^2 x}{\tan x} \right)$	Dependent on the previous M mark Attempts to find the same denominator for both fractions	dM1
	$\frac{2}{\tan 2x}$	Dependent on both the previous M marks. Evidence of correctly applying $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$	ddM1
	$= 2\cot 2x (^*)$	Correct proof with no notational or other errors such as missing <i>x</i> 's or inconsistent variables.	A1*
			[4]
(a) Alt 2	$2\cot 2x = \frac{2}{\tan 2x}$	Applies $\cot 2x = \frac{1}{\tan 2x}$	M1
	$=\frac{2}{\frac{2\tan x}{1-\tan^2 x}}$	Dependent on the previous M mark Attempts to apply the double angle formula for $\tan 2x$	dM1
	$=\frac{1-\tan^2 x}{\tan x} = \frac{1}{\tan x} - \tan x$	Dependent on both the previous M marks. Obtains a rational fraction with a single denominator and attempts to split this up into 2 terms	ddM1
	$= \cot x - \tan x (*)$	Correct proof with no notational or other errors such as missing <i>x</i> 's or inconsistent variables.	A1 *
			[4]

(b)		$5 + \cot(\theta - 15^\circ) - t$	$\operatorname{an}(\theta - 15^{\circ}) = 0$		
		$\Rightarrow 5 + 2\cot() = 0$	Obtains an equation of this form.	M1	
	C	$\cot(\dots) = -\frac{5}{2} \implies \tan(\dots) = -\frac{2}{5}$	Obtains an equation of the form $\tan() = \pm \frac{2}{5}$	M1	
		$2\theta - 30 = \tan^{-1}\left(-\frac{2}{5}\right)$	Can be implied by e.g. $2\theta - 30 = awrt - 21.8$ or $2\theta - 30 = awrt 158.2$	A1	
	θ	$=$ awrt 4.1° or $\theta =$ awrt 94.1°	One correct answer e.g. anything that rounds to 4.1 or anything that rounds to 94.1	A1	
	θ =	= awrt 4.1° and θ = awrt 94.1°	Both answers correct. Ignore any extra answers out of range but withhold this mark if there are any extra values in range.	A1	
					[5]
		Alternative to			
	$5 + \cot() - \tan() = 0 \Longrightarrow 5\tan() + 1 - \tan^{2}()$ $\tan^{2}() - 5\tan() - 1 = 0$			M1	
	Multiples through by tan() to obtain a 3TQ in tan()				
		$\tan() = \frac{5 \pm \sqrt{25 + 4}}{2}$	Solves their 3TQ and proceeds to $tan() =$	M1	
			Can be implied by e.g.		
	($(\theta - 15^\circ) = \tan^{-1}\left(\frac{5 \pm \sqrt{25 + 4}}{2}\right)$	$\theta - 15 = 79.099$ or $\theta - 15 = -10.900$	A1	
	θ	$=$ awrt 4.1° or $\theta =$ awrt 94.1°	One correct answer e.g. anything that rounds to 4.1 or anything that rounds to 94.1	A1	
	θ =	= awrt 4.1° and θ = awrt 94.1°	Both answers correct. Ignore any extra answers out of range but withhold this mark if there are any extra values in range.	A1	
					[5]
		Quest	ion 12 Notes		9
			ates to "meet in the middle" e.g.		
			$n x = \frac{1 - \tan^2 x}{\tan x}$: M1dM1 as in Alt1		
(a)	Note	rhs = $2 \cot 2x = \frac{2}{\tan 2x} = \frac{2}{\frac{21}{1-t}}$	$\frac{2}{\frac{\operatorname{an} x}{\operatorname{an}^2 x}}$: ddM1 uses double angle for tan2x on rhs		
		=	$\frac{1 - \tan^2 x}{\tan x}$ so lhs = rhs		
		A1 Cor	rect proof with conclusion		

Question Number	Scheme	Notes	Marks
13. (a)	$\frac{1}{(4-x)(2-x)} = \frac{A}{(4-x)} + \frac{B}{(2-x)}$ $\Rightarrow 1 \equiv A(2-x) + B(4-x) \Rightarrow A = \dots \text{ or }$	$\frac{1}{1} = \frac{A}{1} + \frac{B}{1}$	M1
	$A = -\frac{1}{2}, B = \frac{1}{2}$ giving $\frac{-\frac{1}{2}}{(4-x)} + \frac{1}{(2-x)}$	<u>must be stated as partial fractions in (a)</u> and not just the values of the constants.	A1
	Correct answe	r in (a) scores both marks	
			[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(4-x)(2-x), \ t \ge 0$		
	$\int \frac{1}{(4-x)(2-x)} \mathrm{d}x = \int k \mathrm{d}t$	Separates variables correctly. dx and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.	B1 oe
	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt \ (+c)$	$\pm \lambda \ln \alpha (4-x) \pm \mu \ln \beta (2-x),$ $\lambda \neq 0, \ \mu \neq 0, \ \alpha \neq 0, \ \beta \neq 0$	M1
	$\frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{1}{2} + \frac{1}{2} \ln(8 - 2x) = kt + \frac{1}{2} +$	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt \text{ oe}$	A1
	$\{t = 0, x = 0 \Rightarrow\} \frac{1}{2}\ln 4 - \frac{1}{2}\ln 2 = 0 + c \ \left\{\Rightarrow c = \frac{1}{2}\ln 2\right\} \qquad \begin{array}{l} \text{Using both } t = 0 \text{ and } x = 0 \\ \text{in an integrated equation} \\ \text{containing a constant of} \\ \text{integration.} \end{array}$		M1
	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt + \frac{1}{2}\ln 2 \Longrightarrow \ln\left(\frac{(4-x)}{2(2-x)^{\frac{1}{2}}}\right) = 2kt$		
	$\frac{4-x}{4-2x} = e^{2kt} \qquad \frac{\pm /\ln(3-x)}{a \text{ fully correct}}$	Starting from an equation of the form $\pm / \ln(a - x) \pm m \ln(b - x) = \pm kt + c, \lambda, \mu, \alpha, \beta \neq 0$, and applies a fully correct method to eliminate their logarithms. (Sign errors only). Must have a constant of integration that need not be evaluated.	
	$4 - x = 4e^{2kt} - 2xe^{2kt} \Longrightarrow 4 - 4e^{2kt} = x - 4e^{2kt}$ $\Rightarrow 4 - 4e^{2kt} = x(1 - 2e^{2kt}) \Longrightarrow x = \frac{4 - 4e^{2kt}}{1 - 2e^{2kt}}$	A complete correct method of rearranging to make x the subject allowing sign errors	dM1
	1 - 2c	Achieves the given answer with no errors.	A1 *
			[7]

(c)	$\left\{ \frac{1}{2} \right\}$	$\frac{4-x}{4-2x} = e^{2kt} \} \Longrightarrow e^{2kt} = \frac{4-1}{4-2} \left\{ = \frac{3}{2} \right\}$	Substitutes $x = 1$ leading to e^{2kt} = value Note: $k = 0.1$	M1	
	$t = \frac{1}{2(0.1)} \ln\left(\frac{3}{2^{\frac{1}{2}}}\right) = 2.027325541 \left\{ = 2.03 (s) (3 sf) \right\}$		Anything that rounds to 2.03 Do not apply isw here and do not accept the exact value.	A1	
					[2]
					11
	Question 13 Notes				
	May use an earlier form of their equation to find t when $x = 1$ e.g.				
		$\frac{1}{2}\ln(3) - \frac{1}{2}\ln(1) = 0.1t + \frac{1}{2}\ln 2 \Longrightarrow 0.2t = \ln \frac{3}{2}$			
		M1: For correct proces	M1: For correct processing leading to kt = value		
(c)	Note	$t = \frac{1}{2(0.1)} \ln \left(\frac{3}{2^{\frac{1}{2}}} = 2.027325541 \left\{ = 2.03 \text{ (s)} (3 \text{ sf}) \right\}$			
		A1: Anything that rounds to 2.03			
			oply isw here		

Question Number	Scheme	Notes	Marks
14.	(a) $y = \frac{(x^2 - 4)^{\frac{1}{2}}}{x^3}, x > 2;$ (b) $f(x) = \frac{24(x^2 - 4)^{\frac{1}{2}}}{x^3}, x > 2$		
(a)	$u = (x^2 - 4)^{\frac{1}{2}}$ $v = x^3$	$(x^{2} - 4)^{\frac{1}{2}} \rightarrow \pm / x(x^{2} - 4)^{-\frac{1}{2}}, \ \lambda \neq 0.$ Can be implied.	M1
	$\frac{du}{dx} = \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}} \frac{dv}{dx} = 3x^2$	$(x^2 - 4)^{\frac{1}{2}} \rightarrow \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}$ un-simplified or simplified. Can be implied.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}(x^3) - 3x^2(x^2 - 4)^{\frac{1}{2}}}{(x^3)^2}$	Applies $\frac{vu\ell - uv\ell}{v^2}$ with $u = (x^2 - 4)^{\frac{1}{2}}$, $v = x^3$, their $u\ell$ and their $v\ell$.	M1
	$\frac{dx}{dx} = \frac{(x^3)^2}{(x^3)^2}$	Correct $\frac{dy}{dx}$, un-simplified or simplified.	A1
	$=\frac{x^{4}(x^{2}-4)^{-\frac{1}{2}}-3x^{2}(x^{2}-4)^{\frac{1}{2}}}{x^{6}}$		
	• $\frac{dy}{dx} = \frac{(x^2 - 4)^{-\frac{1}{2}}(x^4 - 3x^2(x^2 - 4))}{x^6}$	Simplifies $\frac{dy}{dx}$ by either correctly taking out a	
	• $\frac{dx}{dx} = \frac{x^6}{0r}$ • $\frac{dy}{dx} = \frac{x^2(x^2 - 4)^{-\frac{1}{2}} - 3(x^2 - 4)^{\frac{1}{2}}}{x^4}$	factor of $(x^2 - 4)^{-\frac{1}{2}}$ from their numerator or by multiplying numerator and denominator	M1
	• $\frac{1}{\mathrm{d}x} = \frac{1}{x^4}$	$by(x^2 - 4)^{\overline{2}}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - 3(x^2 - 4)}{x^4 (x^2 - 4)^{\frac{1}{2}}} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x^2 + 12}{x^4 (x^2 - 4)^{\frac{1}{2}}}$	Correct algebra leading to $\frac{dy}{dx} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$ $\{A = -2\}$	A1
			[6]
	Alternative by product rule:		
	$u = (x^2 - 4)^{\frac{1}{2}}$ $v = x^{-3}$	$(x^{2} - 4)^{\frac{1}{2}} \rightarrow \pm /x(x^{2} - 4)^{-\frac{1}{2}}, \ \lambda \neq 0.$ Can be implied.	M1
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}} \frac{\mathrm{d}v}{\mathrm{d}x} = -3x^{-4}$	$(x^2 - 4)^{\frac{1}{2}} \rightarrow \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}$ un-simplified or simplified. Can be implied.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}(x^{-3}) + (-3x^{-4})(x^2 - 4)^{\frac{1}{2}}$	Applies $vu' + uv'$ with $u = (x^2 - 4)^{\frac{1}{2}}, v = x^{-3}$, their $u\ell$ and their $v\ell$.	M1
		Correct $\frac{dy}{dx}$, un-simplified or simplified.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2(x^2-4)^{\frac{1}{2}}} - \frac{3(x^2-4)^{\frac{1}{2}}}{x^4} = \dots$	Simplifies $\frac{dy}{dx}$ by correctly writing as two fractions and attempts a common denominator	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - 3(x^2 - 4)}{x^4(x^2 - 4)^{\frac{1}{2}}} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$	Correct algebra leading to $\frac{dy}{dx} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$ $\left\{A = -2\right\}$	A1
			[6]

$f(\sqrt{6}) = \frac{24(6-4)^3}{(\sqrt{6})^3}; = \frac{24\sqrt{2}}{6\sqrt{6}} = \frac{4}{\sqrt{3}} \text{ or } \frac{4}{3}\sqrt{3}$ $f(\sqrt{6}) = \frac{24(6-4)^3}{(\sqrt{6})^3}; = \frac{24\sqrt{2}}{6\sqrt{6}} = \frac{4}{\sqrt{3}} \text{ or } \frac{4}{3}\sqrt{3}$ $\frac{4}{3}\sqrt{3}$ $\frac{1}{3}$ $\frac{1}$	(b)	$\begin{bmatrix} x^4(x^2 - 4)^{\frac{1}{2}} \\ 24(-2x^2 + 12) = 0 \Rightarrow x^2 = 6 \end{bmatrix}$ $\Rightarrow x = \sqrt{6} \text{ or awrt } 2.45$	Sets the numerator of their $\frac{dy}{dx} = 0$ or the numerator of their $f(x) = 0$ and solves to give $x^2 = K$, where $K > 0$ $x = \sqrt{6}$ or awrt 2.45 (Allow $x = \pm \sqrt{6}$ or awrt ± 2.45) (may be implied by their working) Dependent on the previous M mark. Substitutes their found x into $f(x)$ or the given expression from part (a). May be implied by	M1 A1 dM1
Range: $0 < f(x) \leq \frac{4}{3}\sqrt{3}$ or $0 < y \leq \frac{4}{\sqrt{3}}$ Or e.g. $\left(0, \frac{4}{3}\sqrt{3}\right]$ Correct range of y or $f(x)$. Also allow ft on their maximum exact value if both of the M's have been scored. Allow f or "range" for $f(x)$.Alft(c)The function f is many-oneIs Also accept "the function f is not one-one" or "the inverse is one-many". This mark should be withheld if there are contradictory statements.II14 (c)NoteAcceptIs is many to one (or 2 values in domain of f map to one in the range) it is not one to one it is not one to many it is not one to many it is not one to many it is not one to one it is not one to one 		$f(\sqrt{6}) = \frac{24(6-4)^2}{(\sqrt{6})^3}; = \frac{24\sqrt{2}}{6\sqrt{6}} = \frac{4}{\sqrt{3}} \text{ or } \frac{4}{3}\sqrt{3}$	cso leading to $I_{\text{max}} = \frac{1}{6\sqrt{6}}$ or $\frac{1}{\sqrt{3}}$ or $\frac{1}{3}\sqrt{3}$	A1
(c) The function f is many-one Also accept "the function f is not one-one" or "the inverse is one-many". This mark should be withheld if there are contradictory statements. B1 11 12 Question 14 Notes 12 14 (c) Note Accept • f is many to one (or 2 values in domain of f map to one in the range) • f is not one to one • f ⁻¹ would be one to many • the inverse would be one to many • it would be one to one • the graph illustrates a many to one function Do NOT allow • it is many to one		• =	Correct range of y or $f(x)$. Also allow ft on their maximum exact value if both of the M's	A1ft
Image: Problem state Image: Problem state <th< th=""><th>(c)</th><th>The function f is many-one</th><th>or "the inverse is one-many". This mark should be withheld if there are</th><th></th></th<>	(c)	The function f is many-one	or "the inverse is one-many". This mark should be withheld if there are	
14 (c) Note Accept • f is many to one (or 2 values in domain of f map to one in the range) • f is not one to one • f^{-1} would be one to many • the inverse would be one to many • it would be one to many • it is not one to one • it is not one to one • the graph illustrates a many to one function Do NOT allow • it is many to one		Ωυρ	stion 14 Notes	
Any reference to "it" we must assume refers to the inverse because of the wording in the question	14 (c)	 f is many to one (or 2 values in domain of f map to one in the range) f is not one to one f⁻¹ would be one to many the inverse would be one to many it would be one to many it is not one to one the graph illustrates a many to one function Do NOT allow it is many to one You can't reflect in y = x 		